On the mechanism of high-incidence lift generation for steadily translating low-aspect-ratio wings

نویسندگان

  • Adam C. DeVoria
  • Kamran Mohseni
چکیده

High-incidence lift generation via flow reattachment is studied. Different reattachment mechanisms are distinguished, with dynamic manoeuvres and tip vortex downwash being separate mechanisms. We focus on the latter mechanism, which is strictly available to finite wings, and isolate it by considering steadily translating wings. The tip vortex downwash provides a smoother merging of the flow at the trailing edge, thus assisting in establishing a Kutta condition there. This decreases the strength/amount of vorticity shed from the trailing edge, and in turn maintains an effective bound circulation resulting in continued lift generation at high angles of attack. Just below the static lift-stall angle of attack, strong vorticity is shed at the trailing edge indicating an increasingly intermittent reattachment/detachment of the instantaneous flow at mid-span. Above this incidence, the trailing-edge shear layer increases in strength/size representing a negative contribution to the lift and leads to stall. Lastly, we show that the mean-flow topology is equivalent to a vortex pair regardless of the particular physical flow configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the w...

متن کامل

Flutter Analysis of a Low Aspect Ratio Swept- Back Trapezoidal Wing at Low Subsonic Flow

A linear, aeroelastic analysis of a low aspect ratio swept back trapezoidal wing modeled as a cantilever plate is presented. An analytical and numerical formulation for both the aerodynamic forcing and structural response of the wing was developed. The analytical model uses a three dimensional time domain vortex lattice aerodynamic method. A Rayleigh-Ritz approach has been used to transfer equa...

متن کامل

The aerodynamics of revolving wings I. Model hawkmoth wings.

Recent work on flapping hawkmoth models has demonstrated the importance of a spiral 'leading-edge vortex' created by dynamic stall, and maintained by some aspect of spanwise flow, for creating the lift required during flight. This study uses propeller models to investigate further the forces acting on model hawkmoth wings in 'propeller-like' rotation ('revolution'). Steadily revolving model haw...

متن کامل

The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of a...

متن کامل

Lift Enhancement for Low-Aspect-Ratio Wings with Periodic Excitation

In an effort to enhance lift on low-aspect-ratio rectangular flat-plate wings in low-Reynolds-number poststall flows, periodic injection of momentum is considered along the trailing edge in this numerical study. The purpose of actuation is not to reattach the flowbut to change the dynamics of thewake vortices such that the resulting lift force is increased. Periodic forcing is observed to be ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017